Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
mSphere ; 7(1): e0094021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1662305

ABSTRACT

Fungal infections remain a major global concern. Emerging fungal pathogens and increasing rates of resistance mean that additional research efforts and resources must be allocated to advancing our understanding of fungal pathogenesis and developing new therapeutic interventions. Neutrophilic granulocytes are a major cell type involved in protection against the important fungal pathogen Aspergillus fumigatus, where they employ numerous defense mechanisms, including production of antimicrobial extracellular vesicles. A major drawback to work with neutrophils is the lack of a suitable cell line system for the study of fungal pathogenesis. To address this problem, we assessed the feasibility of using differentiated PLB-985 neutrophil-like cells as an in vitro model to study A. fumigatus infection. We find that dimethylformamide-differentiated PLB-985 cells provide a useful recapitulation of many aspects of A. fumigatus interactions with primary human polymorphonuclear leukocytes. We show that differentiated PLB-985 cells phagocytose fungal conidia and acidify conidia-containing phagolysosomes similar to primary neutrophils, release neutrophil extracellular traps, and also produce antifungal extracellular vesicles in response to infection. In addition, we provide an improved method for the isolation of extracellular vesicles produced during infection by employing a size exclusion chromatography-based approach. Advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomics revealed an enrichment of extracellular vesicle marker proteins and a decrease of cytoplasmic proteins in extracellular vesicles isolated using this improved method. Ultimately, we find that differentiated PLB-985 cells can serve as a genetically tractable model to study many aspects of A. fumigatus pathogenesis. IMPORTANCE Polymorphonuclear leukocytes are an important defense against human fungal pathogens, yet our model systems to study this group of cells remain very limited in scope. In this study, we established that differentiated PLB-985 cells can serve as a model to recapitulate several important aspects of human polymorphonuclear leukocyte interactions with the important human fungal pathogen Aspergillus fumigatus. The proposed addition of a cultured neutrophil-like cell line to the experimental toolbox to study fungal pathogenesis will allow for a more mechanistic description of neutrophil antifungal biology. In addition, the easier handling of the cell line compared to primary human neutrophils allowed us to use PLB-985 cells to provide an improved method for isolation of neutrophil-derived extracellular vesicles using size exclusion chromatography. Together, these results provide significant tools and a baseline knowledge for the future study of neutrophil-derived extracellular vesicles in the laboratory.


Subject(s)
Aspergillus fumigatus , Neutrophils , Antifungal Agents , Aspergillus fumigatus/physiology , Chromatography, Liquid , Humans , Neutrophils/microbiology , Tandem Mass Spectrometry
2.
Cells ; 10(8)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1339532

ABSTRACT

Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release "neutrophil extracellular traps" (NETs). In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions. This review highlights recent findings on the pathophysiological influence of NET formation in different bacterial, viral, and non-infectious lung diseases and summarizes medical treatment strategies.


Subject(s)
Extracellular Traps/immunology , Neutrophils/immunology , Pneumonia/immunology , COVID-19/immunology , Disease Progression , Humans , Neutrophils/microbiology , Neutrophils/virology , Pneumonia/microbiology , Pneumonia/pathology , Pneumonia/virology
3.
Scand J Immunol ; 94(3): e13083, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1273132

ABSTRACT

The coronavirus disease COVID-19 was first described in December 2019. The peripheral blood of COVID-19 patients have increased numbers of neutrophils which are important in controlling the bacterial infections observed in COVID-19. We sought to evaluate the cytotoxic capacity of neutrophils in COVID-19 patients. 34 confirmed COVID-19 patients (29 severe, five mild disease), and nine healthy controls were recruited from the Masih Daneshvari Hospital (Tehran, Iran) from March to May 2020. Polymorphonuclear (PMN) cells were isolated from whole blood and incubated with green fluorescent protein (GFP)-labelled methicillin-resistant Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA). Bacterial growth was determined by measuring the florescence of co-cultures of bacteria and neutrophils and reported as the lag time before exponential growth. The number of viable bacteria was determined after 70 hours as colony-forming units (CFU). The immunophenotype of tested cells was evaluated by flow cytometry. Isolated neutrophils have higher surface expression of CD16 and CD62L with negative markers for PMN-MDSC. Bacterial growth in the presence of SA (22 ± 0.9 versus 9.2 ± 0.5 h, P < .01) and PA (12.4 ± 0.6 versus 4.5 ± 0.22, P < .01) was significantly reduced in COVID-19 patients. After 70 h incubation of PMN with bacteria (SA and PA), CFUs were significant increased in COVID-19 patients SA (2.6 ± 0.09 × 108 CFU/mL-severe patients and 1.4 ± 0.06 × 108 CFU/mL-mild patients, P < .001) and PA (2.2 ± 0.09 × 109 CFU/mL-severe patients and 1.6 ± 0.03 × 109 CFU/mL-mild patients, P < .001). Gentamycin proliferation assays confirmed the presence of intracellular bacteria. Reduced bacterial killing by neutrophils from COVID-19 patients may be responsible for the high bacterial yield seen in these patients.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Humans , Iran , Neutrophils/microbiology , Pseudomonas aeruginosa , Staphylococcus aureus
4.
Intern Emerg Med ; 16(5): 1165-1172, 2021 08.
Article in English | MEDLINE | ID: covidwho-1074490

ABSTRACT

The outbreak of coronavirus disease (COVID-19) has brought great challenges to the world. The objectives of this study were to describe the baseline characteristics and changes of biomarkers of these COVID-19 patients and identify predictive value of the above markers for patient death. Using patient death as the observational endpoints, clinical data of inpatients in a special ward for COVID-19 in Wuhan, China were retrospectively collected. Univariate and multivariate Cox regression analyses were used to evaluate prognostic value of baseline characteristics and laboratory data changes. This study included clinical data of 75 patients. Age, c-reactive protein (CRP) and interleukin-6 levels were independent predictors of patient death. Survivors were characterized as having declining neutrophil counts, D-dimer, N-terminal pronatriuretic peptide, troponin I (TnI) and c-reactive protein levels, while counts of lymphocyte gradually came back. Non-survivors were characterized with increasing white blood cell counts (WBC) and neutrophil counts. Changes of WBC, TnI and interleukin-6 were also independently associated with patient death. Older age, baseline CRP and IL-6 levels may be used as meaningful predictors to identify patients with poor prognosis. Changes of biomarkers should be closely monitored in the management of patients with COVID-19, while constantly increasing levels of WBC, TnI and interleukin-6 in the disease course also predict patient death.


Subject(s)
Biomarkers/analysis , COVID-19/blood , COVID-19/mortality , Adult , Aged , Analysis of Variance , Biomarkers/blood , Blood Cell Count/methods , Blood Cell Count/statistics & numerical data , COVID-19/epidemiology , China/epidemiology , Disease Progression , Female , Fibrin Fibrinogen Degradation Products/analysis , Humans , Lymphocytes/microbiology , Male , Middle Aged , Natriuretic Peptide, Brain/analysis , Natriuretic Peptide, Brain/blood , Neutrophils/microbiology , Peptide Fragments/analysis , Peptide Fragments/blood , Prognosis , Proportional Hazards Models , ROC Curve , Retrospective Studies , Troponin I/analysis , Troponin I/blood
SELECTION OF CITATIONS
SEARCH DETAIL